Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 9 - Multiveriable Calculus - 9.5 Total Differentials and Approximations - 9.5 Exercises - Page 503: 14

Answer

To approximate $$ 2.03 \ln 1.02.$$ Notice that $2.03\approx 2 $ and $1.02 \approx 2 $ and we know that $2.03 \ln 1.02 \approx 0.0402$. We, therefore, let $$z=f(x, y)=x \ln y$$ Then $$ \begin{aligned} d z &=f_{x}(x, y) d x+f_{y}(x, y) d y \\ &=\ln y d x+\frac{x}{y} d y \end{aligned} $$ To approximate $2.03 \ln 1.02,$ we let $x=2$, $d x=0.03, y=1,$ and $d y=0.02$, so we have: $$ \begin{aligned} d z &=\ln (1) \cdot(0.03)+\frac{2}{1}(0.02) \\ &=0.04, \\ f(2.03,1.02) &=f(2,1)+\Delta z \\ &\approx f(2,1)+d z \\ &=2 \cdot \ln (1)+0.04 \\ &=0.04 \end{aligned} $$ Thus, $2.03 \ln 1.02 \approx 0.04$. Using a calculator, $2.03 \ln 1.02 \approx 0.0402$ The error is approximately $0.0002$.

Work Step by Step

To approximate $$ 2.03 \ln 1.02.$$ Notice that $2.03\approx 2 $ and $1.02 \approx 2 $ and we know that $2.03 \ln 1.02 \approx 0.0402$. We, therefore, let $$z=f(x, y)=x \ln y$$ Then $$ \begin{aligned} d z &=f_{x}(x, y) d x+f_{y}(x, y) d y \\ &=\ln y d x+\frac{x}{y} d y \end{aligned} $$ To approximate $2.03 \ln 1.02,$ we let $x=2$, $d x=0.03, y=1,$ and $d y=0.02$, so we have: $$ \begin{aligned} d z &=\ln (1) \cdot(0.03)+\frac{2}{1}(0.02) \\ &=0.04, \\ f(2.03,1.02) &=f(2,1)+\Delta z \\ &\approx f(2,1)+d z \\ &=2 \cdot \ln (1)+0.04 \\ &=0.04 \end{aligned} $$ Thus, $2.03 \ln 1.02 \approx 0.04$. Using a calculator, $2.03 \ln 1.02 \approx 0.0402$ The error is approximately $0.0002$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.