Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 9 - Multiveriable Calculus - 9.5 Total Differentials and Approximations - 9.5 Exercises - Page 502: 6

Answer

$$ \begin{aligned} d w=&\left(\ln y+\ln z-\frac{y}{x}\right) d x \\ &+\left(\frac{x}{y}-\ln x+\ln z\right) d y \\ &+\left(\frac{x}{z}+\frac{y}{z}\right) d z \\ =&\left(\ln 1+\ln 4-\frac{1}{2}\right)(0.03) \\ &+\left(\frac{2}{1}-\ln 2+\ln 4\right)(0.02) \\ &+\left(\frac{2}{4}+\frac{1}{4}\right)(-0.01) \\ \approx & 0.0730 \end{aligned} $$

Work Step by Step

$$ \begin{aligned} w=& x \ln (y z)-y \ln \left(\frac{x}{z}\right) \\ =& x(\ln y+\ln z)-y(\ln x-\ln z) \end{aligned} $$ First find $$ \begin{aligned} f_{x}(x, y, z) &=\left(\ln y+\ln z-\frac{y}{x}\right) \\ f_{y}(x, y,z)&=\left(\frac{x}{y}-\ln x+\ln z\right) \\ f_{z}(x, y,z)&=\left(\frac{x}{z}+\frac{y}{z}\right) \end{aligned} $$ Here $$ d w= f_{x}(x, y, z) d x+f_{y}(x, y, z) d y+f_{z}(x, y, z) d z $$ Substitute the given values, $x= 2, y=1, z=4, d x=0.03, d y=0.02 ,d z=-0.01 $ , we have : $$ \begin{aligned} d w=&\left(\ln y+\ln z-\frac{y}{x}\right) d x \\ &+\left(\frac{x}{y}-\ln x+\ln z\right) d y \\ &+\left(\frac{x}{z}+\frac{y}{z}\right) d z \\ =&\left(\ln 1+\ln 4-\frac{1}{2}\right)(0.03) \\ &+\left(\frac{2}{1}-\ln 2+\ln 4\right)(0.02) \\ &+\left(\frac{2}{4}+\frac{1}{4}\right)(-0.01) \\ \approx & 0.0730 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.