Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 9 - Multiveriable Calculus - 9.3 Maxima and Minima - 9.3 Exercises - Page 490: 35

Answer

x=4, y=5 The minimum cost for manufacturing a precision camera is $59

Work Step by Step

$L(x,y)=\frac{3}{2}x^{2}+y^{2}-2x-2y-2xy+68$ $L_x(x,y)=3x-2-2y$ $L_y(x,y)=2y-2-2x$ Set each of these equal to 0 and solve for y. $L_x(x,y)=3x-2-2y=0 \rightarrow y=\frac{3x-2}{2}$ $L_y(x,y)=2y-2-2x=0 \rightarrow y=x+1$ Set them equal, and solve the resulting equation for x. $\frac{3x-2}{2}=x+1$ $3x-2=2x+2$ $x=4 \rightarrow y=5$ The critical point is (4,5) $L_{xx}(x,y)=3$ $L_{yy}(x,y)=2$ $L_{xy}(x,y)=-2$ For (4,5) $L_{xx}(4,5)=3$ $L_{yy}(4,5)=2$ $L_{xy}(4,5)=-2$ $D=3\times2 -(-2)^{2}=2\gt0$ and $L_{xx}(x,y)=3\gt0$, the cost at (4,5) is a minimum $L(x,y)=\frac{3}{2}x^{2}+y^{2}-2x-2y-2xy+68$ $L(4,5)=59$ The minimum cost for manufacturing a precision camera is $59
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.