Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 8 - Further Techniques and Applications of Integration - 8.4 Improper Integrals - 8.4 Exercises - Page 453: 46

Answer

The capital value is equal $ \$ 200,000.$

Work Step by Step

Suppose income from an investment starts (at time 0) at \$6000 a year and increases linearly and continuously at a rate of \$200 a year,so $$ R(t)=(6000+200t) $$ The capital value at an interest rate of $5\%$ compounded continuously (also $r=0.05$) is given by the following integral: $$ \int_{0}^{\infty} (6000+200 t) e^{-0.05 t} d t $$ First, we evaluate the indefinite integral as follows: $$ \int (6000+200 t) e^{-0.05 t} d t $$ use integration by parts with $$ \quad\quad\quad \left[\begin{array}{c}{u=(6000+200 t), \quad\quad dv= e^{-0.05 t} d t } \\ {d u= 200 dt , \quad\quad v= \frac{1}{-0.05}e^{-0.05 t} }\end{array}\right] , \text { then }\\ $$ $ \Rightarrow$ $$ \begin{array}{l}{\int(6000+200 t) e^{-0.05 t} d t} \\ {\quad=-20 e^{-0.05 t}(6000+200 t)+\int 4000 e^{-0.05 t} d t} \\ {\quad=-20 e^{-0.05 t}(6000+200 t)-80,000 e^{-0.05 t}+C}\end{array} $$ Now we will evaluate the improper integral ,by definition, as follows: $$ \begin{split} \int_{0}^{\infty} &(6000+200 t) e^{-0.05 t} d t =\lim _{b \rightarrow \infty} \int_{0}^{b}(6000+200 t) e^{-0.05 t} d t\\ &\left.=\lim _{b \rightarrow \infty}\left[-20 e^{-0.05 t}(6000+200 t)- 80,000 e^{-0.05 t}\right)\right]\left.\right|_{0} ^{b}\\ &=\left.\lim _{b \rightarrow \infty}\left[e^{-0.05 t}((-20)(6000+200 t)-80,000)\right]\right|_{0} ^{b} \\ &= \lim _{b \rightarrow \infty}\left[e^{-0.05 b}(-120,000-4000 b-80,000)\right.+200,000]\\ &=0+200,000 \\ &=\$ 200,000. \end{split} $$ So, The capital value is equal $ \$ 200,000.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.