Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.1 Increasing and Decreasing Functions - 5.1 Exercises - Page 262: 57

Answer

$$ F(t)=-10.28+175.9 t e^{-t / 1.3} $$ (a) first use the product rule to find the derivative, $F^{\prime}(t)$ $$ \begin{aligned} F^{\prime}(t)=&(175.9)\left(e^{-t / 13}\right) \\ &+(175.99 t)\left(-\frac{1}{1.3} e^{-t / 13}\right) \\ =&(175.9)\left(e^{-t / 1.3}\right)\left(1-\frac{t}{1.3}\right) \\ \approx & 175.9 e^{-t / 1.3}(1-0.769 t) \end{aligned} $$ (b) The function $F(t) $ is increasing on $ (0, 1.3 ).$ The function $F(t) $ is decreasing on $(1.3 , \infty).$

Work Step by Step

$$ F(t)=-10.28+175.9 t e^{-t / 1.3} $$ (a) first use the product rule to find the derivative, $F^{\prime}(t)$ $$ \begin{aligned} F^{\prime}(t)=&(175.9)\left(e^{-t / 13}\right) \\ &+(175.99 t)\left(-\frac{1}{1.3} e^{-t / 13}\right) \\ =&(175.9)\left(e^{-t / 1.3}\right)\left(1-\frac{t}{1.3}\right) \\ \approx & 175.9 e^{-t / 1.3}(1-0.769 t) \end{aligned} $$ To find any intervals where this function is increasing or decreasing, set $F^{\prime}(t)=0$ $$ \begin{aligned} F^{\prime}(t) &=175.9 e^{-t / 1.3}(1-0.769 t)=0 \\ \Rightarrow\quad\quad\quad\quad\quad\\\ & 1-0.769 t=0\\ & -0.769 t=-1\\ \Rightarrow\quad\quad\quad\quad\quad\\\ & t=\frac{-1}{-0.769}\\ & t\approx 1.30039 \\ \end{aligned} $$ so $1.3$ is the only critical number. Now, we can use the first derivative test, since the domain is $(0,\infty )$. Check the sign of $F^{\prime}(t)$ in the intervals: $$ (0, 1.3 ), \quad (1.3, \infty), $$ (1) Test a number in the interval $(0, 1.3 ) $ say $1$: $$ \begin{aligned} F^{\prime}(1) &=175.9 e^{-(1) / 1.3}(1-0.769 (1)) \\ &=18.82804 \\ & \gt 0 \end{aligned} $$ we see that $F^{\prime}(t)$ is positive in that interval, so $F(t)$ is increasing on $(0, 1.3)$. (2) Test a number in the interval $(1.3 , \infty ) $ say $2$: $$ \begin{aligned} F^{\prime}(2) &=175.9 e^{-(2) / 1.3}(1-0.769 (2)) \\ &=-20.31902 \\ &\lt 0 \end{aligned} $$ we see that $F^{\prime}(t)$ is negative in that interval, so $F(t)$ is decreasing on $(1.3 , \infty )$. So, (b) The function $F(t) $ is increasing on $ (0, 1.3 ).$ The function $F(t) $ is decreasing on $(1.3 , \infty).$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.