#### Answer

\[{y^,} = \frac{5}{{5x + 3}}\]

#### Work Step by Step

\[\begin{gathered}
y = \ln \,\left( {5x + 3} \right) \hfill \\
Find\,\,the\,\,derivative\,\,of\,\,the\,\,\,function \hfill \\
{y^,} = \,\,{\left[ {\ln \,\left( {5x + 3} \right)} \right]^,} \hfill \\
Use\,\,the\,\,formula\,\,\,\,{\left[ {\ln g\,\left( x \right)} \right]^,} = \frac{{{g^,}\,\left( x \right)}}{{g\,\left( x \right)}} \hfill \\
{y^,} = \frac{{\,{{\left( {5x + 3} \right)}^,}}}{{5x + 3}} \hfill \\
Then \hfill \\
{y^,} = \frac{5}{{5x + 3}} \hfill \\
\end{gathered} \]