Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 4 - Calculating the Derivative - 4.5 Derivatives of Logarithmic Functions - 4.5 Exercises - Page 241: 54

Answer

$$ h(x)=x^{x} $$ Use the ideas from Exercise 53 to find the derivative of the given function. $$ \frac{d}{d x} h(x)=u(x)^{v(x)}\left[\frac{v(x) u^{\prime}(x)}{u(x)}+(\ln u(x)) v^{\prime}(x)\right] $$ where $$ h(x)=x^{x} ,\quad u(x)=x, \quad v(x)=x ,\quad u^{\prime}(x)=1, \quad v^{\prime}(x)=1 $$ So, $$ \begin{aligned} h^{\prime}(x) &=\left(x^{2}+1\right)^{5 x}\left[\frac{5 x(2 x)}{x^{2}+1}+\ln \left(x^{2}+1\right) \cdot(5)\right] \\ &=\left(x^{2}+1\right)^{5 x}\left[\frac{10 x^{2}}{x^{2}+1}+5 \ln \left(x^{2}+1\right)\right]. \end{aligned} $$

Work Step by Step

$$ h(x)=x^{x} $$ Use the ideas from Exercise 53 to find the derivative of the given function. $$ \frac{d}{d x} h(x)=u(x)^{v(x)}\left[\frac{v(x) u^{\prime}(x)}{u(x)}+(\ln u(x)) v^{\prime}(x)\right] $$ where $$ h(x)=x^{x} ,\quad u(x)=x, \quad v(x)=x ,\quad u^{\prime}(x)=1, \quad v^{\prime}(x)=1 $$ So, $$ \begin{aligned} h^{\prime}(x) &=\left(x^{2}+1\right)^{5 x}\left[\frac{5 x(2 x)}{x^{2}+1}+\ln \left(x^{2}+1\right) \cdot(5)\right] \\ &=\left(x^{2}+1\right)^{5 x}\left[\frac{10 x^{2}}{x^{2}+1}+5 \ln \left(x^{2}+1\right)\right]. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.