Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 4 - Calculating the Derivative - 4.3 The Chain Rule - 4.3 Exercises - Page 227: 63

Answer

the amount of the calcium remaining in the bloodstream (in milligrams per cubic centimeter) $t$ days after the initial injection is approximated by $$ \begin{aligned} C(t)&=\frac{1}{2}(2t+1)^{-\frac{1}{2}} \end{aligned} $$ Then, the rate of change of the population of bacteria with respect to time is given by $$ \begin{aligned} C^{\prime}(t) &=\frac{1}{2}(-\frac{1}{2})(2t+1)^{-\frac{-3}{2}} (2)\\ &=(-\frac{1}{2})(2t+1)^{-\frac{-3}{2}} \\ \end{aligned} $$ Now, the rate of change of the calcium level with respect to time for the following numbers of days. (a) 0 day $$ \begin{aligned} C^{\prime}(0) &= (-\frac{1}{2})(2(0)+1)^{-\frac{-3}{2}}\\ &=-\frac{1}{2}\\ \end{aligned} $$ (b) $4$ days $$ \begin{aligned} C^{\prime}(4) &= (-\frac{1}{2})(2(4)+1)^{-\frac{-3}{2}}\\ &= (-\frac{1}{2})(9)^{-\frac{-3}{2}}\\ &= -\frac{1}{2(\sqrt {9})^{3}}\\ &=-\frac{1}{54}\\ & \approx -0.02 \end{aligned} $$ (c) $7.5$ days $$ \begin{aligned} C^{\prime}(7.5) &= (-\frac{1}{2})(2(7.5)+1)^{-\frac{-3}{2}}\\ &= (-\frac{1}{2})(16)^{-\frac{-3}{2}}\\ &= -\frac{1}{2(\sqrt {16})^{3}}\\ &= -\frac{1}{2(64)}\\ &=-\frac{1}{128}\\ & \approx -0.008 \end{aligned} $$ (d) Since $$ C^{\prime}(t)=(-\frac{1}{2})(2t+1)^{-\frac{-3}{2}} \lt 0 $$ for all $t \geq 0 $, so C always decreasing.

Work Step by Step

the amount of the calcium remaining in the bloodstream (in milligrams per cubic centimeter) $t$ days after the initial injection is approximated by $$ \begin{aligned} C(t)&=\frac{1}{2}(2t+1)^{-\frac{1}{2}} \end{aligned} $$ Then, the rate of change of the population of bacteria with respect to time is given by $$ \begin{aligned} C^{\prime}(t) &=\frac{1}{2}(-\frac{1}{2})(2t+1)^{-\frac{-3}{2}} (2)\\ &=(-\frac{1}{2})(2t+1)^{-\frac{-3}{2}} \\ \end{aligned} $$ Now, the rate of change of the calcium level with respect to time for the following numbers of days. (a) 0 day $$ \begin{aligned} C^{\prime}(0) &= (-\frac{1}{2})(2(0)+1)^{-\frac{-3}{2}}\\ &=-\frac{1}{2}\\ \end{aligned} $$ (b) $4$ days $$ \begin{aligned} C^{\prime}(4) &= (-\frac{1}{2})(2(4)+1)^{-\frac{-3}{2}}\\ &= (-\frac{1}{2})(9)^{-\frac{-3}{2}}\\ &= -\frac{1}{2(\sqrt {9})^{3}}\\ &=-\frac{1}{54}\\ & \approx -0.02 \end{aligned} $$ (c) $7.5$ days $$ \begin{aligned} C^{\prime}(7.5) &= (-\frac{1}{2})(2(7.5)+1)^{-\frac{-3}{2}}\\ &= (-\frac{1}{2})(16)^{-\frac{-3}{2}}\\ &= -\frac{1}{2(\sqrt {16})^{3}}\\ &= -\frac{1}{2(64)}\\ &=-\frac{1}{128}\\ & \approx -0.008 \end{aligned} $$ (d) Since $$ C^{\prime}(t)=(-\frac{1}{2})(2t+1)^{-\frac{-3}{2}} \lt 0 $$ for all $t \geq 0 $, so C always decreasing.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.