Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 4 - Calculating the Derivative - 4.1 Techniques for Finding Derivatives - 4.1 Exercises - Page 208: 55

Answer

a. 100; b. 1

Work Step by Step

We are given $S(t)=100-100t^{-1}$ a. For $t=1$, the rate of change is: $\lim\limits_{h \to 0}\frac{s(1+h)-s(1)}{h}$ Finding $s(1+h)=100-100(1+h)^{-1}$ and $s(1)=100-100(1)^{-1}=0$ Therefore, the rate of change at $t=1$ is $\lim\limits_{h \to 0}\frac{100-100(1+h)^{-1}}{h}=\lim\limits_{h \to 0} \frac{100-\frac{100}{1+h}}{h}=\lim\limits_{h \to 0}\frac{100}{1+h}=100$ b. For $t=10$, the rate of change is: $\lim\limits_{h \to 0}\frac{s(10+h)-s(10)}{h}$ Finding $s(10+h)=100-100(10+h)^{-1}$ and $s(10)=100-100(10)^{-1}=90$ Therefore, the rate of change at $t=1$ is $\lim\limits_{h \to 0}\frac{100-100(10+h)^{-1}-90}{h}=\lim\limits_{h \to 0} \frac{10-\frac{100}{10+h}}{h}=\lim\limits_{h \to 0}\frac{10}{10+h}=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.