Answer
$\frac{s}{n}=2^{ \frac{C}{B}}-1$
Work Step by Step
$C=B\log_2(\frac{s}{n}+1)$
$B\log_2(\frac{s}{n}+1)=C$
$\log_2(\frac{s}{n}+1)=\frac{C}{B}$
In exponential form
$2^{ \frac{C}{B}}=\frac{s}{n}+1$
$\frac{s}{n}+1=2^{ \frac{C}{B}}$
$\frac{s}{n}=2^{ \frac{C}{B}}-1$