Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 9 - Section 9.4 - Models for Population Growth - 9.4 Exercises - Page 618: 5

Answer

(a) $3.23\times 10^7~kg$ (b) It takes 1.55 years to reach a biomass of $4\times 10^7~kg$

Work Step by Step

(a) A logistic equation has this form: $\frac{dy}{dt} = ky(1-\frac{y}{M})$ The solution has this form: $y(t) = \frac{M}{1+Ae^{-kt}}~~$ where $~~A = \frac{M-y_0}{y_0}$ We can find $A$: $A = \frac{M-y_0}{y_0} = \frac{(8\times 10^7)-(2\times 10^7)}{2\times 10^7} = 3$ We can write the solution: $y(t) = \frac{8\times 10^7}{1+3e^{-0.71t}}$ We can find the biomass after 1 year: $y(t) = \frac{8\times 10^7}{1+3e^{(-0.71)(1)}} = 3.23\times 10^7~kg$ (b) We can find the time $t$ it takes to reach a biomass of $4 \times 10^7~kg$: $y(t) = \frac{8\times 10^7}{1+3e^{-0.71t}} = 4\times 10^7$ $1+3e^{-0.71t} = \frac{8\times 10^7}{4\times 10^7}$ $1+3e^{-0.71t} = 2$ $3e^{-0.71t} = 1$ $e^{-0.71t} = \frac{1}{3}$ $-0.71t = ln(\frac{1}{3})$ $t = (\frac{1}{-0.71})~ln(\frac{1}{3})$ $t = 1.55$ It takes 1.55 years to reach a biomass of $4\times 10^7~kg$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.