Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 9 - Section 9.2 - Direction Fields and Euler''s Method - 9.2 Exercises - Page 598: 19

Answer

See explanation

Work Step by Step

$y'=y$ and $y(0)=1$ --- a) i) $h=0.4$ $y_1=1+0.4(1)=1.4$ $x_1=0.4$ ii) $h=0.2$ $y_1=1+0.2(1)=1.2$ $x_1=0.2$ $y_2=1.2+0.2(1.2)=1.44$ $x_2=0.4$ iii) $h=0.1$ $y_1=1+0.1(1)=1.1$ $x_1=0.1$ $y_2=1.1+0.1(1.1)=1.21$ $x_2=0.2$ $y_3=1.21+0.1(1.21)=1.331$ $x_3=0.3$ $y_4=1.331+0.1(1.331)=1.4641$ $x_4=0.4$ b) Attached as image. The value approaches $e^x$ as $h \to 0$. The values are underestimates since $e^x$ is increasing between $0 \le x \le 0.4$. c) i) $Err \approx 0.0918$ ii) $Err \approx 0.0518$ iii) $Err \approx 0.02772$ It appears as if the error halves as you half the step size.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.