Answer
See explanation
Work Step by Step
$y'=y$ and $y(0)=1$
---
a)
i) $h=0.4$
$y_1=1+0.4(1)=1.4$
$x_1=0.4$
ii) $h=0.2$
$y_1=1+0.2(1)=1.2$
$x_1=0.2$
$y_2=1.2+0.2(1.2)=1.44$
$x_2=0.4$
iii) $h=0.1$
$y_1=1+0.1(1)=1.1$
$x_1=0.1$
$y_2=1.1+0.1(1.1)=1.21$
$x_2=0.2$
$y_3=1.21+0.1(1.21)=1.331$
$x_3=0.3$
$y_4=1.331+0.1(1.331)=1.4641$
$x_4=0.4$
b)
Attached as image. The value approaches $e^x$ as $h \to 0$. The values are underestimates since $e^x$ is increasing between $0 \le x \le 0.4$.
c)
i) $Err \approx 0.0918$
ii) $Err \approx 0.0518$
iii) $Err \approx 0.02772$
It appears as if the error halves as you half the step size.