Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 9 - Review - Exercises - Page 635: 10

Answer

The solution of the given initial-value problem $$ 1+\cos x) y^{\prime}=\left(1+e^{-y}\right) \sin x, \quad\quad y(0)=y $$ is $$ y(x)=\ln \left[4 e^{-\ln (1+\cos x)}-1\right] =\ln \frac{3-\cos x}{1+\cos x} . $$

Work Step by Step

The initial-value problem is $$ 1+\cos x) y^{\prime}=\left(1+e^{-y}\right) \sin x, \quad\quad y(0)=y $$ We write the equation in terms of differentials and integrate both sides: $$ (1+\cos x) y^{\prime}=\left(1+e^{-y}\right) \sin x \Rightarrow \frac{d y}{1+e^{-y}}=\frac{\sin x d x}{1+\cos x} $$ $ \Rightarrow$ $$ \int \frac{d y}{1+1 / e^{y}}=\int \frac{\sin x d x}{1+\cos x} $$ $ \Rightarrow$ $$ \int \frac{e^{y} d y}{1+e^{y}}=\int \frac{\sin x d x}{1+\cos x} $$ $$ \ln \left|1+e^{y}\right|=-\ln |1+\cos x|+C \Rightarrow \ln \left(1+e^{y}\right)=-\ln (1+\cos x)+C $$ where $ C $ is an arbitrary constant. $$ 1+e^{y}=e^{-\ln (1+\cos x)} \cdot e^{C} \Rightarrow e^{y}=k e^{-\ln (1+\cos x)}-1 $$ where $ k=e^{C} $ is an arbitrary constant. $ \Rightarrow$ $$ y=\ln \left[k e^{-\ln (1+\cos x)}-1\right]. $$ Since $y(0)=0$ $$ 0=\ln \left[k e^{-\ln 2}-1\right] \Rightarrow e^{0}=k\left(\frac{1}{2}\right)-1 \Rightarrow k=4 $$ Thus the solution of the given initial-value problem is $$ y(x)=\ln \left[4 e^{-\ln (1+\cos x)}-1\right] =\ln \frac{3-\cos x}{1+\cos x} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.