Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 8 - Section 8.3 - Applications to Physics and Engineering. - 8.3 Exercises - Page 567: 23

Answer

The moment about the $x$-axis is $$ \begin{aligned} M_{x}&=\sum_{i=1}^{3} m_{i} y_{i} \\ &=10 \end{aligned} $$ The moment about the $y$-axis is $$ \begin{aligned} M_{y}&=\sum_{i=1}^{3} m_{i} x_{i} \\ &=14 \end{aligned} $$ The center of mass is $$ \begin{aligned} (\overline{x}, \overline{y})& =\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right) \\ &=\left(\frac{M_{y}}{\sum_{i=1}^{3} m_{i}}, \frac{M_{x}}{\sum_{i=1}^{3} m_{i}}\right)\\ &=(1.4,1) \end{aligned} $$

Work Step by Step

the system: $$ \begin{array}{l}{m_{1}=4, m_{2}=2, m_{3}=4} \\ {P_{1}(2,-3), P_{2}(-3,1), P_{3}(3,5)}\end{array} $$ The moment about the $x$-axis is $$ \begin{aligned} M_{x}&=\sum_{i=1}^{3} m_{i} y_{i} \\ &=m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3} \\ &=4\cdot (-3)+2\cdot (1)+4\cdot (5) \\ &=10 \end{aligned} $$ The moment about the $y$-axis is $$ \begin{aligned} M_{y}&=\sum_{i=1}^{3} m_{i} x_{i} \\ &=m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3} \\ &=4\cdot (2)+2\cdot (-3)+4\cdot (3) \\ &=14 \end{aligned} $$ The center of mass is $$ \begin{aligned} (\overline{x}, \overline{y})& =\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right) \\ &=\left(\frac{M_{y}}{\sum_{i=1}^{3} m_{i}}, \frac{M_{x}}{\sum_{i=1}^{3} m_{i}}\right)\\ &=\left(\frac{M_{y}}{m_{1} +m_{2} +m_{3}}, \frac{M_{x}}{m_{1} +m_{2} +m_{3} }\right)\\ &=\left(\frac{M_{y}}{4+2 +4}, \frac{M_{x}}{4+2 +4 }\right)\\ &=\left(\frac{14}{10}, \frac{10}{10}\right) \\ &=(1.4,1) \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.