Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.8 - Improper Integrals - 7.8 Exercises - Page 536: 77

Answer

$$ \begin{split} \int_{0}^{\infty} x^{2} e^{-x^{2}} d x &=\lim _{t \rightarrow \infty} \int_{0}^{t} x^{2} e^{-x^{2}} d x \\ & \quad\quad\quad\left[\text { use integration by parts with } \right] \\ &\quad\quad\quad \left[\begin{array}{c}{u=x, \quad\quad dv= x e^{-x^{2}} dx } \\ {d u= dx, \quad\quad v= \frac{1}{-2}e^{-x^{2}} }\end{array}\right] , \text { then }\\ &=\lim _{t \rightarrow \infty}\left[\frac{1}{-2}xe^{-x^{2}} \right]_0^{t}+\frac{1}{2}\int_{0}^{\infty} e^{-x^{2}} d t \\ &=\lim _{t \rightarrow \infty}\left[\frac{t}{-2e^{t^{2}}} \right] +\frac{1}{2}\int_{0}^{\infty} e^{-x^{2}} d t \\ \\ & \quad\quad\quad\left[\text {The fraction part is } \frac{\infty}{\infty} \text { so we can use L'Hospital's } \right] \\ &=\lim _{t \rightarrow \infty}\left[\frac{1}{-4te^{t^{2}}} \right] +\frac{1}{2}\int_{0}^{\infty} e^{-x^{2}} d t \\ &=0 +\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d t\\ &=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d t \end{split} $$ Therefore, $$ \int_{0}^{\infty} x^{2} e^{-x^{2}} d x = \frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d t. $$

Work Step by Step

$$ \begin{split} \int_{0}^{\infty} x^{2} e^{-x^{2}} d x &=\lim _{t \rightarrow \infty} \int_{0}^{t} x^{2} e^{-x^{2}} d x \\ & \quad\quad\quad\left[\text { use integration by parts with } \right] \\ &\quad\quad\quad \left[\begin{array}{c}{u=x, \quad\quad dv= x e^{-x^{2}} dx } \\ {d u= dx, \quad\quad v= \frac{1}{-2}e^{-x^{2}} }\end{array}\right] , \text { then }\\ &=\lim _{t \rightarrow \infty}\left[\frac{1}{-2}xe^{-x^{2}} \right]_0^{t}+\frac{1}{2}\int_{0}^{\infty} e^{-x^{2}} d t \\ &=\lim _{t \rightarrow \infty}\left[\frac{t}{-2e^{t^{2}}} \right] +\frac{1}{2}\int_{0}^{\infty} e^{-x^{2}} d t \\ \\ & \quad\quad\quad\left[\text {The fraction part is } \frac{\infty}{\infty} \text { so we can use L'Hospital's } \right] \\ &=\lim _{t \rightarrow \infty}\left[\frac{1}{-4te^{t^{2}}} \right] +\frac{1}{2}\int_{0}^{\infty} e^{-x^{2}} d t \\ &=0 +\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d t\\ &=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d t \end{split} $$ Therefore, $$ \int_{0}^{\infty} x^{2} e^{-x^{2}} d x = \frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d t. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.