Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 6 - Section 6.5 - Average Value of a Function - 6.5 Exercises - Page 464: 26

Answer

See explanation

Work Step by Step

$f_{ave}[a,b]$ is the average value of $f$ on the interval $[a,b]$, and as such we define: $f_{ave}[a,b] = \frac{1}{b-a}\int_a^b f(x) dx$ Split the integral at $c$: $\int_a^b f(x) dx=\int_a^c f(x) dx+\int_c^b f(x) dx$ So $f_{ave}[a,b]=\frac{1}{b-a}\left(\int_a^c f(x) dx+\int_c^b f(x) dx\right)$ We also have: $\int_a^c f(x)dx=(c-a)f_{ave}[a,c]$ $\int_b^c f(x)dx=(b-c)f_{ave}[b,c]$ Substitute: $f_{ave}[a,b]=\frac{1}{b-a}\left((c-a)f_{ave}[a,c]+(b-c)f_{ave}[c,b]\right)$ Rearrange: $f_{ave}[a,b]=\frac{c-a}{b-a}f_{ave}[a,c]+\frac{b-c}{b-a}f_{ave}[c,b]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.