Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 6 - Section 6.5 - Average Value of a Function - 6.5 Exercises - Page 463: 11

Answer

a) $f_{ave}=\frac{4}{\pi}$ b) $c_1\approx 1.24$ $c_2\approx 2.81$ c) $[0,\pi]\times [0,4/\pi]$

Work Step by Step

a) Determine the average value on $[0,\pi]$: $f_{ave}=\frac{1}{\pi}\int_0^{\pi}(2\sin x-\sin 2x)dx$ $=\frac{1}{\pi}\left((-2\cos x)_0^{\pi}-\left(-\frac{1}{2}\cos 2x\right)_0^\pi\right)$ $=\frac{4}{\pi}$ So $f_{ave}=\frac{4}{\pi}$. b) Find $c$ so that $f(c)=f_{ave}$: $2\sin c-\sin 2c=\frac{4}{\pi}$ $2\sin c-2\sin c\cos c=\frac{4}{\pi}$ $\sin c(1-\cos c)=\frac{4}{\pi}$ Drawing each side we find: $c_1\approx 1.24$ $c_2\approx 2.81$ c) Find a rectangle with same area $[0,\pi]\times [0,4/\pi]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.