Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 5 - Section 5.4 - Indefinite Integrals and the Net Change Theorem - 5.4 Exercises - Page 411: 71


The bacteria population after one hour is $~5443$

Work Step by Step

We can find the population $P(1)$ after one hour: $P(1) = 4000+\int_{0}^{1}1000\cdot 2^t~dt$ $P(1) = 4000+1000\cdot (\frac{2^t}{ln~2})\vert_{0}^{1}$ $P(1) = 4000+1000 \cdot (\frac{2^1}{ln~2}-\frac{2^0}{ln~2})$ $P(1) = 4000+1000 \cdot (\frac{2}{ln~2}-\frac{1}{ln~2})$ $P(1) = 4000+1000 \cdot (\frac{1}{ln~2})$ $P(1) = 5443$ The bacteria population after one hour is $~5443$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.