Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 5 - Section 5.4 - Indefinite Integrals and the Net Change Theorem - 5.4 Exercises - Page 408: 1

Answer

$\int\frac{1}{x^2\sqrt{1+x^2}}dx=-\frac{\sqrt{1+x^2}}{x}+C$

Work Step by Step

Verify $\int\frac{1}{x^2\sqrt{1+x^2}}dx=-\frac{\sqrt{1+x^2}}{x}+C$ We take the derivative of the right side of this equation and verify that it equals the inside of our integral. \begin{equation*} \frac{d}{dx}\left(-\frac{\sqrt{1+x^2}}{x}+C\right)=\frac{d}{dx}\left(-\frac{\sqrt{1+x^2}}{x}\right)+\frac{d}{dx}C=\frac{d}{dx}\left(-\frac{\sqrt{1+x^2}}{x}\right) \end{equation*} \begin{equation*} =-\frac{x\times\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\times 2x-\sqrt{1+x^2}}{x^2} \end{equation*} \begin{equation*} =-\frac{\frac{x^2}{\sqrt{1+x^2}}-\sqrt{1+x^2}}{x^2}=-\frac{\frac{x^2-(1+x^2)}{\sqrt{1+x^2}}}{x^2}=-\frac{\frac{-1}{\sqrt{1+x^2}}}{x^2}=\frac{1}{x^2\sqrt{1+x^2}} \end{equation*} Hence, the result is proved.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.