Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 5 - Section 5.3 - The Fundamental Theorem of Calculus - 5.3 Exercises - Page 399: 2

Answer

a) $g(0)=0$ $g(1)=0.5$ $g(2)=0$ $g(3)=-0.5$ $g(4)=0$ $g(5)=1.5$ $g(6)=4$ b) $g(7)=6$ c) Maximum: $t=1$ Minimum: $t=3$, $t=6$ d) See image

Work Step by Step

$f(t)$ is a piecewise function and can be written as: $-t+1$, from $0\leq t\leq2$ $t-3$, from $2\leq t\leq6$ $-3(t-6)^2+3$, from $6\leq t\leq7$ a) $g(0)=\int_0^0f(t)dt=0$ $g(1)=\int_0^1f(t)dt=\int_0^1(-t+1)dt=[-\frac{t^2}{2}+t]_0^1=0.5$ $g(2)=\int_0^2f(t)dt=\int_0^2(-t+1)dt=[-\frac{t^2}{2}+t]_0^2=0$ $g(3)=\int_0^3f(t)dt= \int_0^2(-t+1)dt+ \int_2^3(t-3)dt=[-\frac{t^2}{2}+t]_0^2+[\frac{t^2}{2}-3t]_2^3=-0.5$ $g(4)=\int_0^4f(t)dt= \int_0^2(-t+1)dt+ \int_2^4(t-3)dt=[-\frac{t^2}{2}+t]_0^2+[\frac{t^2}{2}-3t]_2^4=0$ $g(5)=\int_0^5f(t)dt= \int_0^2(-t+1)dt+ \int_2^5(t-3)dt=[-\frac{t^2}{2}+t]_0^2+[\frac{t^2}{2}-3t]_2^5=1.5$ $g(6)=\int_0^6f(t)dt= \int_0^2(-t+1)dt+ \int_2^6(t-3)dt=[-\frac{t^2}{2}+t]_0^2+[\frac{t^2}{2}-3t]_2^6=4$ b) $g(7)=\int_0^7f(t)dt= \int_0^2(-t+1)dt+ \int_2^6(t-3)dt+ \int_6^7(-3(t-6)^2+3)dt =[-\frac{t^2}{2}+t]_0^2+[\frac{t^2}{2}-3t]_2^6 +[-x^3+18x^2-105x]_6^7 =6$ c) $g(t)$ has a maximum and minimum values when its derivative is 0. It has a maximum value when slope is changing from positive to negative and a minimum value when slope is changing from negative to positive. From the given graph, we can see $f(t)=0$ when $t=1$, $t=3$, and $t=6$. $t=1$ changes from positive to negative, so it is a maximum and $t=3$ and $t=6$ changes from negative to positive, so it a minimum. d) See sketch of graph $g(t)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.