Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.7 - Optimization Problems - 4.7 Exercises - Page 338: 41

Answer

The maximum volume$=V=\frac{2}{9\sqrt 3}\pi R^3$

Work Step by Step

As we know by Pythagoras Theorem $R^2=h^2+r^2$ $r^2=R^2-h^2$ The volume of the cone $=V=\frac{\pi}{3}r^2h$ $V=\frac{\pi}{3}(R^2-h^2)h$ $V=\frac{\pi}{3}(R^2h-h^3)$ thaking differentiate on both sides; $V'(h)=\frac{\pi}{3}\frac{d}{dh}(R^2h-h^3)$ $=\frac{\pi}{3}(\frac{d}{dh}R^2h-\frac{d}{dh}h^3)$ $V'(h)=\frac{\pi}{3}(R^2-3h^2)$ Now, $V'(x)=0$ so, $\frac{\pi}{3}(R^2-3h^2)=0$ when $h=\frac{1}{\sqrt 3}R$ It gives absolute maximum, because, $V'(h)>0$ for $0\frac{1}{\sqrt 3}R$ The maximum volume$=V=\frac{\pi}{3}(\frac{1}{\sqrt 3}R^3+\frac{1}{3\sqrt3}R^3)= \frac{2}{9\sqrt 3}\pi R^3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.