Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.3 - How Derivatives Affect the Shape of a Graph - 4.3 Exercises - Page 304: 92

Answer

If $c \gt \frac{1}{8},$ then the function $f(x) = cx+\frac{1}{x^2+3}$ is increasing on $(-\infty,\infty)$

Work Step by Step

$f(x) = cx+\frac{1}{x^2+3}$ $f'(x) = c+\frac{-2x}{(x^2+3)^2}$ If $f$ is increasing on $(-\infty,\infty)$, then $f'(x) \gt 0$ for all values of $x$ Let $g(x) = \frac{-2x}{(x^2+3)^2}$ To find the minimum value of $g(x)$, we can find $g'(x)$: $g'(x) = \frac{(-2)(x^2+3)^2-(-2x)(2)(x^2+3)(2x)}{(x^2+3)^4}$ $g'(x) = \frac{(-2)(x^2+3)-(-2x)(2)(2x)}{(x^2+3)^3}$ $g'(x) = \frac{-2x^2-6+8x^2}{(x^2+3)^3}$ $g'(x) = \frac{6x^2-6}{(x^2+3)^3} = 0$ $6x^2-6=0$ $x^2-1 = 0$ $x =\pm 1$ $g(1) = \frac{-2(1)}{(1^2+3)^2} = -\frac{1}{8}$ $g(-1) = \frac{-2(-1)}{((-1)^2+3)^2} = \frac{1}{8}$ The function $g(x) = \frac{-2x}{(x^2+3)^2}$ has the minimum value of $-\frac{1}{8}$ Therefore: $f'(x) = c+\frac{-2x}{(x^2+3)^2} \geq c-\frac{1}{8}$ If $c \gt \frac{1}{8},$ then $f'(x) \gt 0$ for all values of $x$ If $c \gt \frac{1}{8},$ then the function $f(x) = cx+\frac{1}{x^2+3}$ is increasing on $(-\infty,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.