Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.1 - Maximum and Minimum Values - 4.1 Exercises - Page 284: 63

Answer

The maximum value of $f$ on this interval is $f(\frac{a}{a+b}) = \frac{a^a~b^b}{(a+b)^{a+b}}$

Work Step by Step

We can find the value of $x$ when $f'(x) = 0$: $f(x) = x^a(1-x)^b$ $f'(x) = ax^{a-1}(1-x)^b+b(1-x)^{b-1}(-1)x^a = 0$ $ax^{a-1}(1-x)^b-b(1-x)^{b-1}x^a = 0$ $ax^{a-1}(1-x)^b = b(1-x)^{b-1}x^a$ $a(1-x) = bx$ $a-ax = bx$ $a = ax+bx$ $x = \frac{a}{a+b}$ We can find the value of $f(\frac{a}{a+b})$: $f(x) = x^a(1-x)^b$ $f(\frac{a}{a+b}) = (\frac{a}{a+b})^a(1-\frac{a}{a+b})^b$ $f(\frac{a}{a+b}) = \frac{a^a}{(a+b)^a}\cdot (\frac{a+b}{a+b}-\frac{a}{a+b})^b$ $f(\frac{a}{a+b}) = \frac{a^a}{(a+b)^a}\cdot (\frac{b}{a+b})^b$ $f(\frac{a}{a+b}) = \frac{a^a}{(a+b)^a}\cdot \frac{b^b}{(a+b)^b}$ $f(\frac{a}{a+b}) = \frac{a^ab^b}{(a+b)^{a+b}}$ Since $a$ and $b$ are both positive, $f(\frac{a}{a+b}) \gt 0$ Note that $f(0) = f(1) = 0$ Therefore, the maximum value of $f$ on this interval is $f(\frac{a}{a+b}) = \frac{a^a~b^b}{(a+b)^{a+b}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.