Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 17 - Section 17.2 - Nonhomogeneous Linear Equations - 17.2 Exercise - Page 1168: 27

Answer

$y=e^x [c_1+c_2 x-\dfrac{1}{2} \ln (1+x^2) +x \tan^{-1} x]$

Work Step by Step

Write the auxiliary solution .$r^2-2r+1=0 \implies r=1$ Here, $y_c=c_1 e^x+c_2 xe^{x}$ The particular solution is: $y_p=u_1 e^x+u_2 xe^{x}$ and $y'_p=u'_1 e^x+u_1 e^{x}+u'_2 xe^x+u_2 e^{x}(1+x)$ or, $u'_1=--u'_2 x$ Here, $y''-3y'+2y=\dfrac{1}{1+e^{-x}}$ $u'_1+u'_2(1+x)=\dfrac{1}{1+x^2}$ $u'_2=\dfrac{1}{1+x^2} \implies u_2=\tan^{-1} x$ and $u'_1=\dfrac{-x}{1+x^2} \implies u_1=-\dfrac{1}{2} \ln (1+x^2)$ Hence, $y=y_c+y_p=e^x [c_1+c_2 x-\dfrac{1}{2} \ln (1+x^2) +x \tan^{-1} x]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.