Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.5 - Curl and Divergence - 16.5 Exercise - Page 1110: 31

Answer

a ) $\nabla r=\dfrac{\bf{r}}{r}$ b) $\nabla \times r=0$ c) $\nabla (1/r)=\dfrac{-r}{r^3}$ d) $\nabla \ln r=\dfrac{r}{r^2}$

Work Step by Step

a) $\nabla r=\dfrac{\partial (r) }{\partial x}i+\dfrac{\partial (r) }{\partial y}j+\dfrac{\partial (r)}{\partial z}k=\dfrac{x }{\sqrt{x^2+y^2+z^2}} i+\dfrac{y}{\sqrt{x^2+y^2+z^2}} j+\dfrac{z}{\sqrt{x^2+y^2+z^2}} k=\dfrac{(xi+yj+zk)}{\sqrt{x^2+y^2+z^2}} =\dfrac{\bf{r}}{r}$ b) $\nabla \times r=\begin{vmatrix}i&j&k\\\dfrac{\partial}{\partial x}&\dfrac{\partial }{\partial y}&\dfrac{\partial }{\partial z}\\x&y&z\end{vmatrix}$ or, $\nabla \times r=(\dfrac{\partial z}{\partial y}-\dfrac{\partial y}{\partial z})i-(\dfrac{\partial z}{\partial x}-\dfrac{\partial x}{\partial z})j+(\dfrac{\partial y}{\partial x}-\dfrac{\partial x}{\partial y})k=0$ c) $\nabla (\dfrac{1}{r})=\dfrac{\partial (\dfrac{1}{r}) }{\partial x}i+\dfrac{\partial (\dfrac{1}{r}) }{\partial y}j+\dfrac{\partial (\dfrac{1}{r})}{\partial z}k=(\dfrac{-1}{r^2}) \nabla r$ From part(a), we have $\nabla r=\dfrac{\bf{r}}{r}$ Thus, $\nabla (\dfrac{1}{r})=\dfrac{-r}{r^3}$ d) $\nabla (\ln r)=\dfrac{\partial (\ln r) }{\partial x}i+\dfrac{\partial (\ln r) }{\partial y}j+\dfrac{\partial (\ln r)}{\partial z}k$ or, $\nabla (\ln r)=(\dfrac{1}{r}) \nabla r$ From part(a), we have $\nabla r=\dfrac{\bf{r}}{r}$ Thus, $\nabla (\ln r)=\dfrac{\bf {r}}{r^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.