Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.4 - Green''s Theorem - 16.4 Exercise - Page 1102: 27

Answer

$0$

Work Step by Step

We can parameterize the curve as $x= \cos \theta; y= \sin \theta$ and $ 0 \leq \theta \lt 2 \pi $ and $dx= -\sin \theta d \theta; dy=\cos \theta d \theta$ We set up the line integral and find out the integrand of the double integral as follows: $\int_{C} F \cdot dr= -\int_{S} \dfrac{2xy}{(x^2+y^2)^2} dx+\int_{S} \dfrac{y^2-x^2}{(x^2+y^2)^2} dy$ or, $=-\int_{S} \dfrac{2(\cos \theta)(\sin \theta)}{((\cos \theta)^2+(\sin \theta)^2)^2} (-\sin \theta d \theta )+\int_{S} \dfrac{(\sin \theta)^2-(\cos \theta)^2}{((\cos \theta)^2+(\sin \theta)^2)^2} (\cos \theta d \theta )$ or, $=\int_{0}^{-2 \pi} [\cos 2 \theta \cos \theta +\sin 2 \theta \sin \theta ] d \theta $ or, $=\int_{0}^{-2 \pi} \cos \theta d\theta $ or, $=[\sin \theta ]_0^{-2 \pi}$ or, $=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.