Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.2 - Line Integrals - 16.2 Exercise - Page 1085: 35

Answer

a) $\overline {x}=\dfrac{1}{m}\int_{C} x \rho(x,y,z) ds$; $\overline {y}=\dfrac{1}{m}\int_{C} y \rho(x,y,z) ds$; $\overline {z}=\dfrac{1}{m}\int_{C} z \rho(x,y,z) ds$ b) The center of mass of the helix is: $(\overline {x}, \overline {y}, \overline {z})=(0,0, 3\pi)$

Work Step by Step

(a) $\overline {x}=\dfrac{1}{m}\int_{C} x \rho(x,y,z) ds; \\\overline {y}=\dfrac{1}{m}\int_{C} y \rho(x,y,z) ds ; \\ \overline {z}=\dfrac{1}{m}\int_{C} z \rho(x,y,z) ds$ b) Here, we have the mass of the wire: $m=\int_C \rho(x,y) ds=k \int_{0}^{2\pi} \sqrt{13} dt=(2 \pi k) (\sqrt {13}) $ Now, we have $\overline {x}=\dfrac{1}{m}\int_{C} x \rho(x,y,z) ds=\dfrac{k\sqrt{13}}{m}\int_{0}^{2\pi} x dt$ and $(\dfrac{1}{2 \pi}) [-2 \cos t]_{0}^{2 \pi} =0$ $\overline {y}=\dfrac{1}{m}\int_{C} y \rho(x,y,z) ds$ and $\dfrac{k\sqrt{13}}{m}\int_{0}^{2\pi} y dt=(\dfrac{1}{2 \pi}) [2 \sin t]_{0}^{2 \pi} =0$ and $\overline {z}=\dfrac{1}{m}\int_{C} z \rho(x,y,z) ds$ and $\dfrac{k\sqrt{13}}{m}\int_{0}^{2\pi} z dt=(\dfrac{1}{2 \pi})[3\dfrac{t^2}{2}]_{0}^{2 \pi} =3 \pi$ Thus, the center of mass of the helix is: $(\overline {x}, \overline {y}, \overline {z})=(0,0, 3\pi)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.