Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Review - Exercises - Page 1150: 35

Answer

$4 \pi$

Work Step by Step

Divergence's Theorem states that $\iint_S F\cdot dS=\iiint_E div F dV$ Here, $S$ is a closed surface and $E$ is the region inside that surface. Thus, div $F=3(x^2+y^2+z^2)=3(r^2+z^2)$ In the cylindrical coordinates, we have: $0 \leq \theta \leq 2 \pi, 0 \leq r \leq 1; 0 \leq z \leq 2$ Here, we have $F=xi+yj+zk \implies div F=1+1+1=3$ and $\iiint_E div F dV=3 \iiint_E dV=(3)(\dfrac{4 \pi}{3})=4 \pi$ Also, $F(r(\theta \phi))=\sin \phi \cos \theta i+\sin \phi \sin \theta j+\cos \phi k$ Thus, $\iint_S F\cdot dS=\sin \phi(\sin^2 \phi \cos^2 \theta+\sin^2 \phi \sin^2 \theta+\cos^2 \phi)dA=\iint_D \sin \phi dA$ or, $\int_0^{\pi} \int_0^{2 \pi} \sin \phi d\theta d \phi=\int_0^{\pi} \sin \phi d\phi \int_0^{2 \pi} d\theta$ or, $\iint_S F\cdot dS=[-\cos \phi]_0^{\pi}[\theta]_0^{2\pi}=(-\cos \pi +\cos 0)(2 \pi-0)=4 \pi$ Hence, $\iint_S F\cdot dS=\iiint_E div F dV=4 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.