Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.5 - Surface Area - 15.5 Exercise - Page 1029: 22

Answer

$4 \pi a^2 $

Work Step by Step

We are given that $z=\sqrt {a^2-(x^2+y^2}$ is the equation of the upper hemi-sphere. The surface area of the part $z=f(x,y)$ can be written as: $A(S)=\iint_{D} \sqrt {1+(f_x)^2+(f_y)^2} dx \ dy$ and, $\iint_{D} dA$ is the projection of the surface on the xy-plane. Now, the area of the given surface is: $A(S)=2 \iint_{D} \sqrt {1+(\dfrac{-x}{\sqrt {a^2-(x^2+y^2}})^2+(\dfrac{-y}{\sqrt {a^2-(x^2+y^2}})^2} dx \ dy \\= 2 \int_{a}^a \int_{-\sqrt {a^2-y^2}}^{\sqrt {a^2-y^2}} \dfrac{a}{\sqrt {a^2-(x^2+y^2)}}dx \ dy$ We can use the polar co-ordinates because of the part $x^2+y^2$ Therefore, we have: $A(S)=2 \lim\limits_{t \to a^{-}} \int_{0}^{2 \pi} \int_{0}^{t} \dfrac{a}{\sqrt {a^2-r^2}} r \ dr \ d \theta \\ = 2 \times \int_{0}^{2 \pi} d \theta \times \lim\limits_{t \to a^{-}} \int_{0}^{t} \dfrac{ar}{\sqrt {a^2-r^2}} dr \\= 2 (2 \pi) \times \lim\limits_{t \to a^{-}} [-a \sqrt {a^2-r^2}]_0^t \\= 4 \pi (-a \sqrt {a^2-t^2} +a \sqrt {a^2}] \\= 4 \pi (a) (a) \\= 4 \pi a^2 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.