Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 14 - Section 14.5 - The Chain Rule. - 14.5 Exercise - Page 944: 22

Answer

$\dfrac{\partial T}{\partial p} =0$; $\dfrac{\partial T}{\partial q} =\dfrac{-1}{8}$; and $\dfrac{\partial T}{\partial r} =\dfrac{1}{32}$

Work Step by Step

$\dfrac{\partial T}{\partial q} =\dfrac{ (2 q r^{1/2}+q^{1/2} r)-( q^{1/2} r)(2 \sqrt r+\dfrac{r}{2 \sqrt q})}{(2q\sqrt r+\sqrt qr)^2}$ and $\dfrac{\partial T}{\partial p} =0$ Plug the values $p=2; q=1; r=4$, we get $\dfrac{\partial T}{\partial q} =\dfrac{ (2 q r^{1/2}+q^{1/2} r)-( q^{1/2} r)(2 \sqrt r+\dfrac{r}{2 \sqrt q})}{(2q\sqrt r+\sqrt qr)^2}=\dfrac{ (-8)}{64}=\dfrac{-1}{8}$; and $\dfrac{\partial T}{\partial r} =\dfrac{ (2 q r^{1/2}+q^{1/2} r)(\sqrt q)-(q^{1/2} r)(\dfrac{q}{\sqrt r}+\sqrt q)}{(2q\sqrt r+\sqrt qr)^2}$; Plug the values $p=2; q=1; r=4$. $\dfrac{\partial T}{\partial r} =\dfrac{ (2 q r^{1/2}+q^{1/2} r)(\sqrt q)-(q^{1/2} r)(\dfrac{q}{\sqrt r}+\sqrt q)}{(2q\sqrt r+\sqrt qr)^2}=\dfrac{2}{64}=\dfrac{1}{32}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.