Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 13 - Section 13.3 - Arc Length and Curvature - 13.3 Exercise - Page 869: 47

Answer

$$T(1)= \langle \frac{2}{3}, \frac{2}{3}, \frac{1}{3} \rangle$$ $$\mathrm{N}(1) =\left\langle \frac{-1}{3}, \frac{2}{3} ,\frac{-2}{3}\right\rangle$$ $$ \begin{aligned} \mathbf{B}(1)=\left\langle-\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\rangle \end{aligned} $$

Work Step by Step

We have the curve: $$ \mathbf{r}(t)=\left\langle t^{2}, \frac{2}{3} t^{3}, t\right\rangle $$ At $t=1$, we find that: $$ \mathbf{r}(1)=\left\langle (1)^{2}, \frac{2}{3} (1)^{3}, (1)\right\rangle= \left(1, \frac{2}{3}, 1 \right) $$ We first compute the ingredients needed for the unit normal vector: $$ r^{\prime}(t) =\left\langle 2t, 2 t^{2}, 1\right\rangle $$ $\Rightarrow$ $$ \begin{aligned} \left|r^{\prime}(t)\right|&=\sqrt{ 4t^{2}+4t^{4}+1}\\ &=\sqrt{(1+2 t^{2})^{2}}\\ &=1+2 t^{2} \end{aligned} $$ Then, the unit tangent vector $T(t)$ is given by: $$ \begin{aligned} T(t) &=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}\\ &=\frac{1}{1+2 t^{2}}\left\langle 2t, 2 t^{2}, 1\right\rangle\\ &=\frac{\left\langle 2t, 2 t^{2}, 1\right\rangle}{1+2 t^{2}} \end{aligned} $$ at the given point, corresponding to $t=1$, we find that: $$ \begin{aligned} T(1) &=\frac{\left\langle 2(1), 2 (1)^{2}, 1\right\rangle}{1+2 (1)^{2}}\\ &=\frac{\left\langle 2, 2, 1 \right\rangle}{1+2 }\\ &=\left\langle \frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle \end{aligned} $$ Then, we can find: $$ \begin{aligned} \mathbf{T}^{\prime}(t) &=-4 t\left(2 t^{2}+1\right)^{-2}\left\langle 2 t, 2 t^{2}, 1\right\rangle+\left(2 t^{2}+1\right)^{-1}\langle 2,4 t, 0\rangle\\ &=\left(2 t^{2}+1\right)^{-2}\left\langle-8 t^{2}+4 t^{2}+2,-8 t^{3}+8 t^{3}+4 t,-4 t\right\rangle \\ & =2\left(2 t^{2}+1\right)^{-2}\left\langle 1-2 t^{2}, 2 t,-2 t\right\rangle \end{aligned} $$ $\Rightarrow$ $$ \begin{aligned} \left|\mathrm{T}^{\prime}(t)\right|& =2\left(2 t^{2}+1\right)^{-2} \sqrt{\left(1-2 t^{2}\right)^{2}+(2 t)^{2}+(-2 t)^{2}} \end{aligned} $$ Then, the principal unit normal vector $N(t)$ is given by: $$ \begin{aligned} \mathrm{N}(t)&=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|} \\ &=\frac{2\left(2 t^{2}+1\right)^{-2}\left\langle 1-2 t^{2}, 2 t,-2 t\right\rangle}{2\left(2 t^{2}+1\right)^{-2} \sqrt{\left(1-2 t^{2}\right)^{2}+(2 t)^{2}+(-2 t)^{2}}} \\ &=\frac{\left\langle 1-2 t^{2}, 2 t,-2 t\right\rangle}{\sqrt{1-4 t^{2}+4 t^{4}+8 t^{2}}} \\ &=\frac{\left\langle 1-2 t^{2}, 2 t,-2 t\right\rangle}{1+2 t^{2}} \end{aligned} $$ at the given point, corresponding to $t=1$, we find that: $$ \begin{aligned} \mathrm{N}(1)&=\frac{\left\langle 1-2 (1)^{2}, 2 (1),-2(1)\right\rangle}{1+2 (1)^{2}}\\ &=\frac{\left\langle -1, 2 ,-2\right\rangle}{3 }\\ &=\left\langle \frac{-1}{3}, \frac{2}{3} ,\frac{-2}{3}\right\rangle \end{aligned} $$ The binormal vector is given by: $$ \begin{aligned} \mathbf{B}(1)=\mathbf{T}(1) \times \mathbf{N}(1)&=\left[\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{-1}{3}, & \frac{2}{3} & \frac{-2}{3}\\ \end{array}\right]\\ &=\left\langle-\frac{4}{9}-\frac{2}{9},-\left(-\frac{4}{9}+\frac{1}{9}\right), \frac{4}{9}+\frac{2}{9}\right\rangle \\ &=\left\langle-\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\rangle. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.