Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 13 - Review - Exercises - Page 882: 5

Answer

$\dfrac{1}{3} i -\dfrac{2}{\pi^2}j+\dfrac{2}{\pi}k$

Work Step by Step

Consider $I=\int_0^{1} r(t) dt=\int_0^{1} \lt t^2, t \cos \pi t, \sin \pi t \gt dt$ or, $=[\lt \dfrac{t^3}{3}, \dfrac{t \sin \pi t}{\pi}+\dfrac{\cos \pi t}{\pi^2},-\dfrac{\cos \pi t}{\pi} \gt dt]_0^1$ or, $=\lt \dfrac{1^3}{3}-\dfrac{0}{3}, [\dfrac{(1) sin \pi (1)}{\pi}+\dfrac{ \cos \pi (1)}{\pi^2}]- [0+\dfrac{ \cos \pi (0)}{\pi^2}],-\dfrac{\cos \pi (1)}{\pi} -(\dfrac{\cos 0}{\pi}) \gt $ or, $=\lt \dfrac{1}{3}, -\dfrac{1}{\pi^2}-\dfrac{ 1}{\pi^2}, \dfrac{1}{\pi}+\dfrac{1}{\pi} \gt $ Hence, $\int_0^{1} r(t) dt=\dfrac{1}{3} i -\dfrac{2}{\pi^2}j+\dfrac{2}{\pi}k$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.