Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.10 - Taylor and Maclaurin Series - 11.10 Exercises - Page 772: 59



Work Step by Step

$\sqrt {1+x^{4}}=(1+x^{4})^{1/2}=\Sigma_{n=0}^{\infty}\dfrac{(\frac{1}{2})(-\frac{1}{2}).....(\frac{1}{2})-n+1)x^{4n}}{(n)!}$ $\int_{0}^{0.4}\sqrt {1+x^{4}}dx=\int_{0}^{0.4}\Sigma_{n=0}^{\infty}\dfrac{(\frac{1}{2})(-\frac{1}{2}).....(\frac{1}{2})-n+1)x^{4n}}{(n)!}$ Then $=[\Sigma_{n=0}^{\infty}\dfrac{(\frac{1}{2})(-\frac{1}{2}).....(\frac{1}{2})-n+1)x^{4n+1}}{(4n+1)(n)!}]_{0}^{0.4}$ $\approx 0.401024$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.