Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Problems Plus - Problems - Page 789: 14

Answer

$$ \frac{1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots}{1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots}=\frac{1}{(1-2^{1-p})} $$

Work Step by Step

Suppose that the given expression be called Z. $$ Z=\frac{1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots}{1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots} $$ Then $$ \begin{aligned} Z &=\frac{1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots}{1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots}=\\ &=\frac{1+\left(2 \cdot \frac{1}{2^{p}}-\frac{1}{2^{p}}\right)+\frac{1}{3^{p}}+\left(2 \cdot \frac{1}{4^{p}}-\frac{1}{4^{p}}\right)+\cdots}{1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots} \\ &= \frac{\left(1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots\right)+\left(2 \cdot \frac{1}{2^{p}}+2 \cdot \frac{1}{4^{p}}+2 \cdot \frac{1}{6^{p}}+\cdots\right)}{1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots} \\ &=1+\frac{2\left(\frac{1}{2^{p}}+\frac{1}{4^{p}}+\frac{1}{6^{p}}+\frac{1}{8^{p}}+\cdots\right)}{1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots} \\ &=1+\frac{\frac{1}{2^{p-1}}\left(1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots\right)}{1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots} \\ &=1+2^{1-p} Z \end{aligned} $$ Therefore, $$ Z=1+2^{1-p}Z $$ $\Rightarrow $ $$ Z-2^{1-p}Z=1 \Rightarrow Z(1-2^{1-p})=1 $$ $\Rightarrow $ $$ Z=\frac{1}{(1-2^{1-p})} $$ So, $$ \frac{1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots}{1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots}=\frac{1}{(1-2^{1-p})} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.