Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Review - Exercises - Page 691: 45

Answer

Vertices: $( \pm 3, 0)$ and Foci: $(\pm 1,0)$
1533650597

Work Step by Step

The equation is: $ \frac{x^2}{9}+\frac{y^2}{8}=1$ The standard form of the equation of an ellipse with center $(h,k)$ with major axis and minor axis of lengths $2a$ and $2b$ is defined as: $ \frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$ or, $ \frac{(x-h)^2}{b^2}+\frac{(y-k)^2}{a^2}=1$ Compare the given equation with the standard form, we get $a=3$ and $b=2 \sqrt2$ and $c^2= a^2-b^2=3-2 \sqrt2$ or, $c=1$ Vertices: $( \pm 3, 0)$ and Foci: $(\pm 1,0)$ See the attached graph.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.