Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.9 Introduction to Differential Equations - 7.9 Exercises - Page 590: 39

Answer

$$y = \ln \left( {{e^x} + 2} \right)$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dx}} = {e^{x - y}} \cr & \frac{{dy}}{{dx}} = \frac{{{e^x}}}{{{e^y}}} \cr & {\text{separate}} \cr & {e^y}dy = {e^x}dx \cr & {\text{integrate both sides}} \cr & \int {{e^y}} dy = \int {{e^x}} dx \cr & {e^y} = {e^x} + C \cr & {\text{the initial condition }}y\left( 0 \right) = \ln 3{\text{ implies that}} \cr & {e^{\ln 3}} = {e^0} + C \cr & 3 = 1 + C \cr & C = 2 \cr & {e^y} = {e^x} + 2 \cr & {\text{solve for }}y \cr & y = \ln \left( {{e^x} + 2} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.