## Calculus: Early Transcendentals (2nd Edition)

Published by Pearson

# Chapter 7 - Integration Techniques - 7.6 Other Integration Strategies - 7.6 Exercises - Page 556: 68

#### Answer

$= - \frac{1}{3}{p^2}{e^{ - 3p}} - \frac{2}{9}p{e^{ - 3p}} - \frac{4}{{27}}{e^{ - 3p}} + C$

#### Work Step by Step

$\begin{gathered} \int_{}^{} {{p^2}{e^{ - 3p}}dp} \hfill \\ \hfill \\ Integrate\,\,using\,\,the\,\,formula\, \hfill \\ \hfill \\ \int_{}^{} {{x^n}{e^{ax}}dx} = \frac{1}{a}{x^n}{e^{ax}} - \frac{n}{a}\int_{}^{} {{x^{n - 1}}{e^{ax}}dx} \hfill \\ \hfill \\ therefore \hfill \\ \hfill \\ \int_{}^{} {{p^2}{e^{ - 3p}}dp} = - \frac{1}{3}{p^2}{e^{ - 3p}} - \frac{2}{{ - 3}}\int_{}^{} {x{e^{ - 3p}}dp} \hfill \\ \hfill \\ = - \frac{1}{3}{p^2}{e^{ - 3p}} + \frac{2}{3}\,\,\left[ {\frac{1}{{ - 3}}p{e^{ - 3p}} - \frac{1}{3}\int_{}^{} {{e^{ - 3p}}dp} } \right] \hfill \\ \hfill \\ simplify \hfill \\ \hfill \\ = - \frac{1}{3}{p^2}{e^{ - 3p}} - \frac{2}{9}p{e^{ - 3p}} - \frac{4}{{27}}{e^{ - 3p}} + C \hfill \\ \end{gathered}$

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.