Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 6 - Applications of Integration - 6.10 Hyperbolic Functions - 6.10 Exercises - Page 503: 52

Answer

$$f'\left( u \right) = \sec u$$

Work Step by Step

$$\eqalign{ & f\left( u \right) = {\sinh ^{ - 1}}\left( {\tan u} \right) \cr & {\text{differentiate with respect to }}u \cr & f'\left( u \right) = \frac{d}{{du}}\left[ {{{\sinh }^{ - 1}}\left( {\tan u} \right)} \right] \cr & {\text{using the chain rule}}{\text{, }} \cr & {\text{recall that }}\frac{d}{{du}}\left[ {{{\sinh }^{ - 1}}z} \right] = \frac{1}{{\sqrt {{z^2} + 1} }}\frac{{dz}}{{du}}.{\text{ consider }}z = \tan u \cr & f'\left( u \right) = \frac{1}{{\sqrt {{{\left( {\tan u} \right)}^2} + 1} }}\frac{d}{{du}}\left[ {\tan u} \right] \cr & {\text{solving the derivative}} \cr & f'\left( u \right) = \frac{1}{{\sqrt {{{\left( {\tan u} \right)}^2} + 1} }}\left( {{{\sec }^2}u} \right) \cr & f'\left( u \right) = \frac{{{{\sec }^2}u}}{{\sqrt {{{\tan }^2}u + 1} }} \cr & {\text{by the pythagorean identity }}{\tan ^2}x + 1 = {\sec ^2}x \cr & f'\left( u \right) = \frac{{{{\sec }^2}u}}{{\sqrt {{{\sec }^2}u} }} \cr & f'\left( u \right) = \frac{{{{\sec }^2}u}}{{\sec u}} \cr & f'\left( u \right) = \sec u \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.