Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 6 - Applications of Integration - 6.10 Hyperbolic Functions - 6.10 Exercises - Page 502: 5

Answer

$${\sinh ^{ - 1}}x = \ln \left( {x + \sqrt {{x^2} + 1} } \right)$$

Work Step by Step

$$\eqalign{ & {\text{Let }}y = {\sinh ^{ - 1}}x,{\text{ then}} \cr & y = {\sinh ^{ - 1}}x \Leftrightarrow x = \sinh y \cr & {\text{Using the hyperbolic identities}} \cr & x = \sinh y = \frac{{{e^y} - {e^{ - y}}}}{2} \cr & x = \frac{{{e^y} - {e^{ - y}}}}{2} \cr & 2x = {e^y} - {e^{ - y}} \cr & {e^y} - 2x - {e^{ - y}} = 0 \cr & {\text{Multiply the equation by }}{e^y} \cr & {e^{2y}} - 2x{e^y} - 1 = 0 \cr & {\text{By the quadratic formula}} \cr & {e^y} = \frac{{ - \left( { - 2x} \right) \pm \sqrt {{{\left( {2x} \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{2} \cr & {e^y} = \frac{{2x \pm \sqrt {4{x^2} + 4} }}{2} \cr & {e^y} = \frac{{2x \pm 2\sqrt {{x^2} + 1} }}{2} \cr & {e^y} = x \pm \sqrt {{x^2} + 1} \cr & {\text{Taking the positive square root because }}{e^y} > 0{\text{ for all real }}x \cr & {e^y} = x + \sqrt {{x^2} + 1} \cr & {\text{Solve for }}y{\text{ by taking the natural logarithm of both sides}} \cr & y = \ln \left( {x + \sqrt {{x^2} + 1} } \right) \cr & {\text{As we know }}y = {\sinh ^{ - 1}}x,{\text{ then}} \cr & {\sinh ^{ - 1}}x = \ln \left( {x + \sqrt {{x^2} + 1} } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.