Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 5 - Integration - 5.5 Substitution Rule - 5.5 Exercises - Page 393: 107

Answer

$$\frac{4}{3}\left( {1 + \sqrt {1 + x} } \right)\sqrt {1 + \sqrt {1 + x} {\text{ }}} - 4\sqrt {1 + \sqrt {1 + x} {\text{ }}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\sqrt {1 + \sqrt {1 + x} } }}} \cr & {\text{Let }}u = \sqrt {1 + x} {\text{ }} \Rightarrow {\text{ }}du = \frac{1}{{2\sqrt {1 + x} }}dx{\text{ }} \cr & {\text{ }} \Rightarrow {\text{ }}dx = 2\sqrt {1 + x} du \cr & {\text{ }} \Rightarrow {\text{ }}dx = 2udu \cr & {\text{Use the substitution}} \cr & \int {\frac{{dx}}{{\sqrt {1 + \sqrt {1 + x} } }}} = \int {\frac{{2u}}{{\sqrt {1 + u} }}} du \cr & {\text{Let }}z = 1 + u{\text{ }} \Rightarrow {\text{ }}dz = du \cr & \int {\frac{{2u}}{{\sqrt {1 + u} }}} du = \int {\frac{{2\left( {z - 1} \right)}}{{\sqrt z }}} dz \cr & {\text{ }} = \int {\frac{{2z - 2}}{{\sqrt z }}} dz \cr & {\text{ }} = \int {\left( {2{z^{1/2}} - 2{z^{ - 1/2}}} \right)} dz \cr & {\text{Integrating}} \cr & {\text{ }} = 2\left( {\frac{{{z^{3/2}}}}{{3/2}}} \right) - 2\left( {\frac{{{z^{1/2}}}}{{1/2}}} \right) + C \cr & {\text{ }} = \frac{4}{3}{z^{3/2}} - 4{z^{1/2}} + C \cr & {\text{ }} = \frac{4}{3}z\sqrt z - 4\sqrt z + C \cr & {\text{Back - substitute }}z = 1 + u{\text{ }} \cr & {\text{ }} = \frac{4}{3}\left( {1 + u} \right)\sqrt {1 + u{\text{ }}} - 4\sqrt {1 + u{\text{ }}} + C \cr & {\text{Back - substitute }}u = \sqrt {1 + x} \cr & {\text{ }} = \frac{4}{3}\left( {1 + \sqrt {1 + x} } \right)\sqrt {1 + \sqrt {1 + x} {\text{ }}} - 4\sqrt {1 + \sqrt {1 + x} {\text{ }}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.