Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 5 - Integration - 5.5 Substitution Rule - 5.5 Exercises - Page 391: 46

Answer

$$\frac{1}{2}$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /4} {\frac{{\sin \theta }}{{{{\cos }^3}\theta }}} d\theta \cr & {\text{set }}u = \cos \theta {\text{ then }}du = - \sin \theta d\theta ,{\text{ }} - du = \sin \theta d\theta \cr & {\text{use the substitution in the integral }}\int {\frac{{\sin \theta }}{{{{\cos }^3}\theta }}} d\theta \cr & \int {\frac{{\sin \theta }}{{{{\cos }^3}\theta }}} d\theta = \int {\frac{{ - du}}{{{u^3}}}} \cr & {\text{property of the exponents}} \cr & = - \int {{u^{ - 3}}} du \cr & {\text{use }}\int {{u^n}du = \frac{{{u^{n + 1}}}}{{n + 1}} + C} \cr & = - \frac{{{u^{ - 2}}}}{{ - 2}} + C \cr & = \frac{1}{{2{u^2}}} + C \cr & {\text{replace }}u{\text{ with }}\cos \theta \cr & = \frac{1}{{2{{\cos }^2}\theta }} + C \cr & = \frac{1}{2}{\sec ^2}\theta + C \cr & {\text{then}} \cr & \int_0^{\pi /4} {\frac{{\sin \theta }}{{{{\cos }^3}\theta }}} d\theta = \frac{1}{2}\left[ {{{\sec }^2}\theta } \right]_0^{\pi /4} \cr & {\text{evaluate the limits }} \cr & = \frac{1}{2}\left[ {{{\sec }^2}\left( {\frac{\pi }{4}} \right) - {{\sec }^2}\left( 0 \right)} \right] \cr & {\text{simplifying}} \cr & = \frac{1}{2}\left( {2 - 1} \right) \cr & = \frac{1}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.