#### Answer

$e^{x^2}$ grows faster than $e^{10x}$.

#### Work Step by Step

We will find the limit $\lim_{x\to\infty}\frac{e^{x^2}}{e^{10x}}.$
1) If it is equal to zero then $e^{x^2}$ grows slower than $e^{10x}$;
2) If it is equal to $\infty$ then $e^{x^2}$ grows faster than $e^{10x}$;
3) If it is equal to some non zero constant then their growth rates are comparable.
"LR" will stand for "Apply L'Hopital's rule":
$$\lim_{x\to\infty}\frac{e^{x^2}}{e^{10x}}=\lim_{x\to\infty}e^{x^2-10x}=e^{\lim_{x\to\infty}(x^2-10x)}=[e^\infty]=\infty,$$
and thus $e^{x^2}$ grows faster than $e^{10x}$.
NOTE: We used that $\lim_{x\to\infty}(x^2-10x)=\lim_{x\to\infty}x^2(1-10/x)=[\infty^2(1-0)]=\infty$.