Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.5 Derivatives of Trigonometric Functions - 3.5 Exercises - Page 170: 75

Answer

See proof

Work Step by Step

First we have to determine $\dfrac{d}{dx} (\cos x)$. We have: $\dfrac{d}{dx} (\cos x)=\lim\limits_{h \to 0}\dfrac{\cos (x+h)-\cos x}{h}$ Use the identity: $\cos(x+y)=\cos x\cos y-\sin x\sin y$ $\dfrac{d}{dx} (\cos x)=\lim\limits_{h \to 0}\dfrac{\cos x\cos h-\sin x\sin h-\cos x}{h}$ $=\lim\limits_{h \to 0}\dfrac{\cos x(\cos h-1)-\sin x\sin h}{h}$ $=\lim\limits_{h \to 0}\dfrac{\cos x(\cos h-1)}{h}-\lim\limits_{h \to 0}\dfrac{\sin x\sin h}{h}$ $=\cos x\lim\limits_{h \to 0}\dfrac{\cos h-1}{h}-\sin x\lim\limits_{h \to 0}\dfrac{\sin h}{h}$ We use the limits: $\lim\limits_{x \to 0}\dfrac{\cos x-1}{x}=0$ $\lim\limits_{x \to 0}\dfrac{\sin x}{x}=1$ $\dfrac{d}{dx} (\cos x)=\cos x\cdot 0-\sin x\cdot 1=\sin x$ We got: $\dfrac{d}{dx} (\cos x)=-\sin x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.