Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 14 - Vector Calculus - 14.2 Line Integrals - 14.2 Exercises - Page 1075: 21

Answer

$\dfrac{15}{2}$

Work Step by Step

In order to find the integral on the line we will use the formula: $\int_{r} f \ dr=\int_a^b f(r(t)) \cdot |r'(t)| \ dt$ The parametrisation of the line can be found as: $r(t)=(1,1) +t (2-1, 5-1); t \in [0,1]$ or, $r(t)=(1+t, 1+4t) \implies r'(t)=(1,4)$ So, $|r'(t)|=\sqrt {1^2+4^2}=\sqrt {17}$ Thus, we have: $\int_{r} f \ dr=\int_0^1 f(1+t, 1+4t) \cdot \sqrt {17} \ dr \\=\sqrt {17} \int_0^1 (3+9t) \ dt \\=\sqrt {17} \int_0^1 3 \ dt +\sqrt {17} \int_0^1 9t \ dt \\=3 \sqrt {17} (1-0) +9 \sqrt {17} (\dfrac{1}{2}-0) \\=\dfrac{15 \sqrt {17}}{2}$ Next, the average value is given by: $f(c)=\dfrac{1}{|r'(t)|} \int_r f \ dr=\dfrac{1}{\sqrt {17}}\times \dfrac{15 \sqrt {17}}{2}=\dfrac{15}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.