Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 12 - Functions of Several Veriables - Review Exercises - Page 961: 62

Answer

$${D_{\bf{u}}}f\left( {0,3} \right) = \frac{{\sqrt 3 }}{{18}}$$

Work Step by Step

$$\eqalign{ & f\left( {x,y} \right) = \frac{x}{{{y^2}}};\,\,\,\,P\left( {0,3} \right);\,\,\,\,{\bf{u}} = \left\langle {\frac{{\sqrt 3 }}{2},\frac{1}{2}} \right\rangle \cr & {\bf{u}} = \sqrt {{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2}} = 1 \cr & {\bf{u}}{\text{ is a unit vector}} \cr & \cr & {\text{The gradient of }}f\left( {x,y} \right){\text{ is}} \cr & {f_x}\left( {x,y} \right) = \frac{1}{{{y^2}}} \cr & {f_y}\left( {x,y} \right) = - \frac{{2x}}{{{y^3}}} \cr & \nabla f\left( {x,y} \right) = \frac{1}{{{y^2}}}{\bf{i}} - \frac{{2x}}{{{y^3}}}{\bf{j}} \cr & \cr & {\text{Calculate the gradient at the point }}P\left( {0,3} \right) \cr & \nabla f\left( {0,3} \right) = \frac{1}{{{{\left( 3 \right)}^2}}}{\bf{i}} - \frac{{2\left( 0 \right)}}{{{{\left( 3 \right)}^3}}}{\bf{j}} \cr & \nabla f\left( {0,3} \right) = \frac{1}{9}{\bf{i}} \cr & \nabla f\left( {0,3} \right) = \left\langle {\frac{1}{9},0} \right\rangle \cr & \cr & {\text{Computing the directional derivatives of }}f{\text{ at }}\left( {0,3} \right) \cr & \operatorname{in} {\text{ the direction of the vector }}{\bf{u}} = \left\langle {\frac{{\sqrt 3 }}{2},\frac{1}{2}} \right\rangle \cr & {D_{\bf{u}}}f\left( {a,b} \right) = \nabla f\left( {a,b} \right) \cdot {\bf{u}} \cr & {D_{\bf{u}}}f\left( {0,3} \right) = \left\langle {\frac{1}{9},0} \right\rangle \cdot \left\langle {\frac{{\sqrt 3 }}{2},\frac{1}{2}} \right\rangle \cr & {D_{\bf{u}}}f\left( {0,3} \right) = \frac{{\sqrt 3 }}{{18}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.