Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 11 - Vectors and Vector-Valued Functions - 11.7 Motion in Space - 11.7 Exercises - Page 826: 12

Answer

$${\bf{v}}\left( t \right) = \left\langle { - 3\sin t,4\cos t} \right\rangle ,{\text{ speed}}:{\text{ }}\sqrt {16 - 7{{\sin }^2}t} {\text{ and }}{\bf{a}}\left( t \right) = \left\langle { - 3\cos t, - 4\sin t} \right\rangle $$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = \left\langle {3\cos t,4\sin t} \right\rangle ,\,\,\,\,\,{\text{for }}0 \leqslant t \leqslant 2\pi \cr & \left( a \right){\text{find the velocity and speed }} \cr & {\text{the velocity vector is given by }}\,\,\left( {{\text{see page 817}}} \right) \cr & {\bf{v}}\left( t \right) = {\bf{r}}'\left( t \right) \cr & {\bf{v}}\left( t \right) = \frac{d}{{dt}}\left[ {\left\langle {3\cos t,4\sin t} \right\rangle } \right] \cr & {\text{differentiating each component}} \cr & {\bf{v}}\left( t \right) = \left\langle { - 3\sin t,4\cos t} \right\rangle \cr & {\text{The speed of the object is the scalar function }}\left| {{\bf{v}}\left( t \right)} \right|{\text{ then}} \cr & \left| {{\bf{v}}\left( t \right)} \right| = \left| {\left\langle { - 3\sin t,4\cos t} \right\rangle } \right| \cr & \left| {{\bf{v}}\left( t \right)} \right| = \sqrt {{{\left( { - 3\sin t} \right)}^2} + {{\left( {4\cos t} \right)}^2}} \cr & \left| {{\bf{v}}\left( t \right)} \right| = \sqrt {9{{\sin }^2}t + 16{{\cos }^2}t} \cr & {\text{simplifying by the identity si}}{{\text{n}}^2}t + {\cos ^2}t = 1 \cr & \left| {{\bf{v}}\left( t \right)} \right| = \sqrt {9{{\sin }^2}t + 16\left( {1 - {{\sin }^2}t} \right)} \cr & \left| {{\bf{v}}\left( t \right)} \right| = \sqrt {9{{\sin }^2}t + 16 - 16{{\sin }^2}t} \cr & \left| {{\bf{v}}\left( t \right)} \right| = \sqrt {16 - 7{{\sin }^2}t} \cr & \cr & \left( b \right){\text{find the acceleration of the object}} \cr & {\text{the acceleration vector is given by }}\,\,{\bf{a}}\left( t \right) = {\bf{v}}'\left( t \right)\left( {{\text{see page 817}}} \right) \cr & {\bf{a}}\left( t \right) = \frac{d}{{dt}}\left[ {\left\langle { - 3\sin t,4\cos t} \right\rangle } \right] \cr & {\text{differentiating each component}} \cr & {\bf{a}}\left( t \right) = \left\langle { - 3\cos t, - 4\sin t} \right\rangle \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.