Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 11 - Vectors and Vector-Valued Functions - 11.3 Dot Products - 11.3 Exercises - Page 788: 20

Answer

$${\bf{u}} \cdot {\bf{v}} = 16,\,\,\,\,{\text{and}}\,\,\,\,\theta \approx {60^ \circ }$$

Work Step by Step

$$\eqalign{ & {\bf{u}} = \left\langle {3,4,0} \right\rangle {\text{ and }}{\bf{v}} = \left\langle {0,4,5} \right\rangle \cr & {\text{find the dot product using the theorem 11}}{\text{.1 }}\left( {page\,\,783} \right) \cr & {\bf{u}} \cdot {\bf{v}} = \left\langle {3,4,0} \right\rangle \cdot \left\langle {0,4,5} \right\rangle = \left( 3 \right)\left( 0 \right) + \left( 4 \right)\left( 4 \right) + \left( 0 \right)\left( 5 \right) \cr & {\bf{u}} \cdot {\bf{v}} = 0 + 16 + 0 \cr & {\bf{u}} \cdot {\bf{v}} = 16 \cr & {\text{find the magnitude of }}{\bf{u}}{\text{ and }}{\bf{v}}\,\,\left( {see\,\,page\,\,\,\,776} \right) \cr & \left| {\bf{u}} \right| = \left| {\left\langle {3,4,0} \right\rangle } \right| = \sqrt {{{\left( 3 \right)}^2} + {{\left( 4 \right)}^2} + {{\left( 0 \right)}^2}} = \sqrt {9 + 16} = 5 \cr & \left| {\bf{v}} \right| = \left| {\left\langle {0,4,5} \right\rangle } \right| = \sqrt {{{\left( 0 \right)}^2} + {{\left( 4 \right)}^2} + {{\left( 5 \right)}^2}} = \sqrt {16 + 25} = \sqrt {41} \cr & {\text{find the angle between the vectores using }}\cos \theta = \frac{{{\bf{u}} \cdot {\bf{v}}}}{{\left| {\bf{u}} \right|\left| {\bf{v}} \right|}}{\text{ then}} \cr & \cos \theta = \frac{{{\bf{u}} \cdot {\bf{v}}}}{{\left| {\bf{u}} \right|\left| {\bf{v}} \right|}} = \frac{{16}}{{\left( 5 \right)\left( {\sqrt {41} } \right)}} \cr & {\text{solving for }}\theta \cr & \theta = {\cos ^{ - 1}}\left( {\frac{{16}}{{5\left( {\sqrt {41} } \right)}}} \right) \cr & {\text{simplify by using a calculator}} \cr & \theta \approx {60^ \circ } \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.