Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.2 Representing Functions - 1.2 Exercises - Page 26: 84

Answer

a) $\left(-\dfrac{b}{2a},-\dfrac{b^2-4ac}{4a}\right)$ b) $x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$ for $b^2-4ac>0$

Work Step by Step

We are given the function: $f(x)=ax^2+bx+c,$ where $a\not=0$ a) Rewrite the function by completing the square: $f(x)=a\left(x^2+\dfrac{b}{a}x\right)+c$ $=a\left(x^2+2\cdot\dfrac{b}{2a}x+\dfrac{b^2}{4a^2}-\dfrac{b^2}{4a^2}\right)+c$ $=a\left(x^2+2\cdot\dfrac{b}{2a}x+\dfrac{b^2}{4a^2}\right)-a\cdot \dfrac{b^2}{4a^2}+c$ $=a\left(x+\dfrac{b}{2a}\right)^2-\dfrac{b^2-4ac}{4a}$ The function $f$ reaches its minimum or maximum depending on the term $a\left(x+\dfrac{b}{2a}\right)^2$. The extremum is obtained for $a\left(x+\dfrac{b}{2a}\right)^2=0$. This means: $x+\dfrac{b}{2a}=0\Rightarrow x=-\dfrac{b}{2a}$ Determine the corresponding value of $f$: $f\left(-\dfrac{b}{2a}\right)=a\left(-\dfrac{b}{2a}+\dfrac{b}{2a}\right)^2-\dfrac{b^2-4ac}{4a}$ $=0-\dfrac{b^2-4ac}{4a}$ $=-\dfrac{b^2-4ac}{4a}$ The coordinates of the vertex are: $\left(-\dfrac{b}{2a},-\dfrac{b^2-4ac}{4a}\right)$. b) The zeroes of the function are the solutions of the equation: $f(x)=0$ $a\left(x+\dfrac{b}{2a}\right)^2-\dfrac{b^2-4ac}{4a}=0$ The equation crosses the $x$-axis twice when it has two different roots. We have: $\left(x+\dfrac{b}{2a}\right)^2=\dfrac{b^2-4ac}{4a^2}$ The equation has two solutions if the right side is greater than zero, which measn $b^2-4ac>0$. $x+\dfrac{b}{2a}=\pm\sqrt{\dfrac{b^2-4ac}{4a^2}}$ $x+\dfrac{b}{2a}=\pm\dfrac{\sqrt{b^2-4ac}}{2a}$ $x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.