Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 9 - Differential Equations - Review - Exercises - Page 675: 15

Answer

(a) $10lnP - 10ln(2000-P) + 10ln19 = t$ $P(t=20) = 557$ (b) $t \approx 33.5$

Work Step by Step

(a) $\frac{dP}{dt} = 0.1P(1- \frac{P}{2000})$ $\int \frac{dP}{0.1P(1- \frac{P}{2000})} = \int dt$....(1) Now, $\frac{1}{0.1P(1- \frac{P}{2000})} = \frac{1- \frac{P}{2000}}{0.1P(1- \frac{P}{2000})} + \frac{\frac{P}{2000}}{0.1P(\frac{2000-P}{2000})}$ So, $\frac{1}{0.1P(1- \frac{P}{2000})} = \frac{10}{P} + \frac{10}{2000-P}$....(2) Using (1) and (2): $\int \frac{10}{P}dP + \int \frac{10}{2000-P} = \int dt$ $10lnP - 10ln(2000-P) + lnC = t$ Now, at t=0, P=100, so: $10ln100 - 10ln1900 + lnC = 0$ $lnC = 10ln1900 - 10ln100$ $lnC = ln\frac{1900^{10}}{100^{10}}$ $C = 19^{10}$ Thus, $10lnP - 10ln(2000-P) + 10ln19 = t$ $ln(\frac{P^{10}19^{10}}{(2000-P)^{10}}) = t$.....(3) For t=20: $(\frac{19P}{2000-P})^{10} = e^{20}$ $\frac{19P}{2000-P} = e^2$ $\frac{19P}{2000-P} \approx 7.34$ $26.34P=14680$ $P(t=20) = 557$ {Since population $cannot$ be in decimal} (b) $P=1200, t=?$ We know that: $10ln(\frac{19P}{2000-P}) = t$ $10ln(28.5) = t$ Thus, $t \approx 33.5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.