Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.5 Strategy for Integration - 7.5 Exercises - Page 548: 26

Answer

$\displaystyle{\int_0^1{\frac{3x^2+1}{x^3+x^2+x+1}dx}=\ln 4\sqrt{2}-\frac{\pi}{4}}$

Work Step by Step

$ I=\displaystyle\int_0^1{\frac{3x^2+1}{x^3+x^2+x+1}dx} $ Say, $f\left( x \right) =x^3+x^2+x+1,$ then $f\left( -1 \right)=0$. Therefore, $\left( x+1 \right)$ is a root of $f\left( x \right)$. Thus, $(x^2+1)$ is the other root. $I=\displaystyle\int_0^1{\frac{3x^2+1}{\left( x^2+1 \right) \left( x+1 \right)}dx}\\ I=\displaystyle\int_0^1{\frac{3x^2+1+2-2}{\left( x^2+1 \right) \left( x+1 \right)}dx}\\ I=\displaystyle\int_0^1{\frac{3x^2+3-2}{\left( x^2+1 \right) \left( x+1 \right)}dx}\\ I=\displaystyle\int_0^1{\frac{3\left( x^2+1 \right) -2}{\left( x^2+1 \right) \left( x+1 \right)}dx}\\ I=3\displaystyle\int_0^1{\frac{x^2+1}{\left( x^2+1 \right) \left( x+1 \right)}dx}-2\int_0^1{\frac{1}{\left( x^2+1 \right) \left( x+1 \right)}dx}\\ I=3\displaystyle\int_0^1{\frac{1}{x+1}dx}-2\int_0^1{\frac{1}{\left( x^2+1 \right) \left( x+1 \right)}dx}\\$ $\rightarrow 3\displaystyle\int_0^1{\frac{1}{x+1}dx}= 3\left[ \ln \left| x+1 \right| \right] _{0}^{1}$ $\rightarrow -2\displaystyle\int_0^1{\frac{1}{\left( x^2+1 \right) \left( x+1 \right)}dx}\\$ $\displaystyle{\frac{1}{\left( x^2+1 \right) \left( x+1 \right)}\equiv \frac{Ax+B}{x^2+1}+\frac{C}{x+1}\\} 1=\left( Ax+B \right) \left( x+1 \right) +C\left( x^2+1 \right) \\ 1=Ax^2+Ax+Bx+B+Cx^2+C$ $x=0\ \therefore \ B+C=1$ $x=1\ \therefore \ 1=A+C+A+B+1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0=2A+B+C\ \Rightarrow \ A=-\frac{1}{2}\\ x=2\ \therefore\ 1=4A+4C+2A+2B+1\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0=6A+2C+2C+2B+1\\ \ \ \ \ \ \ \ \ \ \ \ \ -2=6A+2C\\ 1=2C\ \Rightarrow \ C=\frac{1}{2}\ \therefore \ B=\frac{1}{2}$ $-2\displaystyle{\int_0^1{\frac{-\frac{1}{2}x+\frac{1}{2}}{x^2+1}+\frac{1}{2\left( x+1 \right)}dx}}\\ -2\displaystyle\int_0^1{\frac{1-x}{2\left( x^2+1 \right)}+\frac{1}{2\left( x+1 \right)}dx}\\ -2\displaystyle\int_0^1{-\frac{x-1}{2\left( x^2+1 \right)}+\frac{1}{2\left( x+1 \right)}dx}\\ \displaystyle\int_0^1{\frac{x-1}{x^2+1}dx}-\int_0^1{\frac{1}{x+1}dx}$ $\displaystyle-\int_0^1{\frac{1}{x+1}dx}=-\left[ \ln \left| x+1 \right| \right] _{0}^{1}$ $\displaystyle\int_0^1{\frac{x-1}{x^2+1}dx}\\$ $\begin{matrix} x=\tan \theta& x^2=\tan ^2\theta\\ \frac{dx}{d\theta}=\sec ^2\theta& dx=\sec ^2\theta \ d\theta\\ \end{matrix}$ $\displaystyle\int_0^{\frac{\pi}{4}}{\frac{\tan \theta -1}{\tan ^2\theta +1}\sec ^2\theta \ d\theta}\\ \displaystyle\int_0^{\frac{\pi}{4}}{\tan \theta -1\ d\theta}=\left[ \ln \left| \sec \theta \right|-\theta \right] _{0}^{\pi /4}$ $I=3\left[ \ln \left| x+1 \right| \right] _{0}^{1}-\left[ \ln \left| x+1 \right| \right] _{0}^{1}+\left[ \ln \left| \sec \theta \right|-\theta \right] _{0}^{\pi /4}\\ I=\displaystyle3\ln 2-\ln 2+\ln \sqrt{2}-\frac{\pi}{4}\\ I=\displaystyle{\ln 4\sqrt{2}-\frac{\pi}{4}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.